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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  VOL. 2 .  P R I K T E D  I N  G R E A T  B R I T A I N  

A random-walk model for hydrocarbon-type chains 
with short-range correlations 

V. D. GUPTAt,  U. KAPUR and C. MEHROTRA 
Physics Department, Indian Institute of Technology, Kanpur, India 
MS. receiaed 23rd December 1968, in reaisedform 20th March 1969 

Abstract, The conformational statistics of a normal alkane-type chain is studied by 
describing a random walk on a diamond lattice. The progress of the chain is governed 
bp two probability parameters. The mathematical methods of a Markoff chain are 
used to calculate the expected square of the end-to-end distance for an oriented 
chain. The problem of excluded volume is not considered. 

Since the introduction by Kuhn (1934, 1942) of the random-walk model to approximate 
mathematically the distributions of the configurations that flexible linear molecules might 
assume, the theoretical calculation of the mean dimensions of polymeric molecules has 
been the subject of numerous publications in recent years (Montroll 1950, Ullman and 
Hermans 1953, Zimm et al. 1953, Tobolsky and Gupta 1962, Wall et al. 1962). The  
dimensions of the polymeric chains are most conveniently characterized in terms of the 
mean square end-to-end separation <Rnz),  where n is the number of steps. The knowledge 
of this distance is important in developing the equation of state for rubber elasticity, for 
deriving equations expressing intrinsic viscosity in terms of the chain length, for inter- 
preting light scattering data from dilute solutions and for promoting the growth of other 
important theoretical concepts. 

Recently, using the mathematical methods of Markoff chains, Tobolsky (1959) has 
calculated the average square length of a normal alkane-type chain. His model is the 
following. The n links of the chain are represented by n vectors in a diamond lattice, 
R,, Rl ,  R, ... R,,-l, the components of which (X, Y,  2) can assume only the values 
1 and -1. A property of the diamond lattice is that each successive vector is obtained 
from the preceding one by changing the sign of one component and leaving the two 
others unchanged (see appendix). The  three possible orientations of a link have prob- 
abilities a or b according to whether it is placed in the trans or in one of the two gauche 
positions, with respect to the two preceding links. The probabilities a and b are deter- 
mined by the relations 

and a+2b = 1 (1) 
a 
- = exp (gF) 
b 

where E = E,- E,, is the energy difference between a gauche and a trans sequence of 
three links. In  the calculation of the average ( R 2 )  the chain is treated as a Markoff chain 
(Feller 1957) constructed from pairs of links (R,R,), (R1 R2), (R, R3) ..., such that the 
first link of each pair is identified with the last link of the preceding pair. The transition 
probability matrix of this Markoff chain relates the orientation of a vector to those of 
two preceding ones, Hijmans and Holleman (1962) have further modified this model 
and included in the calculation of ( R 2 )  the excluded-volume effect. All conformations 
containing cyclohexane-type loops and most of those involving pentane-type steric hin- 
drances are excluded. 

In  the present communication we consider a further modification of Tobolsky’s model 
to consider the statistics of an oriented hydrocarbon-type chain. Again the chain describes 
a random walk on a diamond lattice. We consider a sequence of three consecutive links 
and if the last one is parallel to the first, i.e. when the sign of the same coordinate has 
changed, we assume that it occurs with a probability Y. This is the probability of the 
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orientation being destroyed. Let the other two probabilities, i.e. of preserving the orien- 
tation (in the direction indicated by the arrow in figure 1) and reversing the orientation, 
be designated as p and q. In  other words, if two consecutive changes of sign involve the 
coordinates X and Y, then the next change occurs at the coordinate Y again with prob- 
ability Y, at the coordinate X with probability p and with probability q at the remaining 

P =  1-1 
- 11 

-1-3  
- 3 - 1  

& 
Figure 1. A hydrocarbon-type chain on a diamond lattice. 

0 0 0 p + r  q 0 
0 q p + r  0 0 0 
0 0 0  0 0 1 
0 0 0 1 - r  r 0 

coordinate. These probability parameters are shown in the figure. The  transition pro- 
bability matrix P becomes 

31 13 1-1 -11 -1 -3  - 3 - 1  
0 r 1 - r  0 0 0 3 1 1  13 1 0  0 0 0 0 

(3) 

( R 2 >  = E{(Xo+ ... +Xn-1)2+(Y0+ ... + Yn-1)2+(ZO+ .., +Z,-l)2> (4) 
where E stands for the expected value. The  magnitude of the components is taken to be 
unity for simplicity of calculation: 

n - 2  n-1 

<R2> = 3n + 2 2 c E(X(i,X,,, + Y(i,Y(,, + Z,i,Z(,J 
i = o  j = i + l  

n - 2  n - 1 - i  

= 3n + 2 2 E(X(O,X~k) + Y(0) Y(k) + z(Cl)z(lc))- 
I = O  k = l  

This can be written simply as 
n - I  

(R2) = - 3 n + 2  2 ( n - k ) L k  
k = O  
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The  chain could start in any one of the six states. The weights assigned to the various 
states are 

w1 = 3 

w,  = w3 = 1 

wq = wg = -1 ( 7 )  
we = -3.  

With these, in general, 
6 

E(X(,,X,,, + Y(s, Y(t) + Z(S,Z(tJ = 2 P i P ) W j P j k ( t -  s)wk (8) 
j.k = 1 

where is the sth step transition probability from the state j to k. T o  evaluate these 
elements, one has to evaluate first the row and column eigenvectors of the matrix. If these 
are X ( r ) ,  Y(?), corresponding to the eigenroots A,, then 

CTw1 is the inverse of the inner product of the row and column vectors. The matrix P 
has three eigenvectors of the symmetric pattern (x, y ,  z ,  z, y ,  x), which will not contribute 
to  Lk, and three eigenvectors of the antisymmetric form (x, y ,  x, -x, - y ,  -x), which 
would contribute. The eigenvalues corresponding to the antisymmetric eigenvectors are 
- 1, A, and A,, where A1 and A, are roots of 

1-r 4 
p3,k  = -p,,k = -p,,k = p,,k = ( - 1)k- c, + - (1 - hl)2A,"-1C 2 4 r -1  

4 
Y- 1 +--(I -A2)2A2"-1C 3 
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where 

h l (1  - c, = -- 
2(h, -X,)(Zq+ 1-7 

X Z ( 1  - - X I 2 )  

c3 = - 2(h, -h2)(2q+ 1 - r j  
6 

Now 

2 P l k n ) W k  = 3 ( P , l n - P 3 6 n ) + ( P 1 2 n - P 1 4 n ) + ( P 1 3 n - P , 5 n )  = LJrl. (11) 
k =  1 

The different values of j correspond to the chain starting in different initial states, 
and thus we obtain different values of Lk. Since we are interested in calculating an ‘en- 
semble average’ value of the expected square of the end-to-end distance, for each value 
of Lk,  the calculated (R2) is weighted by the stationary-state probabilities of the corres- 
ponding initial starting state. The stationary-state probabilities are obtained by solving 
the set of equations X P  = X and normalizing the components of the vector P to unity, 
i.e. 2 P,, = 1 .  For the six states the steady-state probabilities are given below: 

4 -__- 4 4 1-r 1 - r  4 - 
2(2g+l-r)’2(24+1--Y)’2(2q+ 1-1.)’2(2q+l-r)’2(2q+ l - r ) ’2(2q+l-? , ) ’  

Substituting these values, we can write 

1 - - Y  

L, = L,, + L 2 k  + - L 3 k .  
2 q + l - r  4 

On substituting various values, we obtain 

We make use of the identity 

and let 

n h”+1 h n - 1  

n -  1 ( -  l ) n + l +  1 

k=O 4 
2 ( n - k ) ( - l ) k  = = in+-------. 

For large values of n the value of the expected square of the end-to-end distance for an 
oriented hydrocarbon-type molecule is reduced to a simple expression 

n _- 2q( - 1 + Y ) ~  

Zq+ 1 - - Y  

128q 
(R2) = [ -3n+2A-----+ 

4(2q+ 1 -P)’ 1 - - T  

It should be possible to test the validity of this equation from measurements on light 
scattering, viscosity, etc., for hydrocarbons of various chain lengths. This would also 
permit an estimate of the various transition probability parameters, and froni measurements 
on chains of different molecular weights the self-consistency of these parameters could be 
checked. 

The result for the special case of Tobolsky is obtained by putting 4 = i ( 1 -  Y ) .  In  
this case the above expression is reduced to 

2n 
1-If ( R 2 )  = ---$(1+%)1o2. (15) 
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Further, if Y = i, which implies that there is no energy difference between the trans 
and the two gauche configurations, 

( R 2 )  = 2nlO2 (16) 

<R2)  = $nlo2. (17) 

and, if Y = 0, which implies that the trans configurations are nearly excluded, 

These results are well known in the theory of random walk. The  problem of excluded 
volume is not considered here. 
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Appendix 
In  a diamond lattice any lattice point is joined to its nearest neighbours with tetrahedral 

bonds (centre of a regular tetrahedron joined to four vertices). This may be illustrated as 
in figure 2(a). On each carbon atom four such vectors end. (In various polymer chains 
we come across such bonds.) 

(0) ( b )  

Figure 2 .  

Our aim here is to find a set of axes in which we can describe these bonds in a very 
convenient way. We shall first choose the set of axes and then show how these tetrahedral 
bonds can be described. 

We take an orthogonal set of axes and choose four points A, B, C and D given by 
(0, 0, 0), (2,2, 0), (0,2, 2) and (2,0, 2). Now, if we join all these points with each other, we 
obtain a tetrahedron. Therefore we can take them to be the atoms A, B, C and D shown 
in figure 2(a). 

The coordinates of the centre (where the perpendiculars from any vertex to the opposite 
face meet) will be given by 

0 + 2 + 0 + 2  0 + 2 + 2 + 0  0 + 0 + 2 + 2  
or  (1,1,1>. ( 4  ' 4 ' 4  

Hence the vector AE is given by (1, 1, 1). Similarly other vectors are EB (1, 1, i), 
EC (7, 1, 1) and ED (1, T, 1). In the case of an actual lattice we shall find other vectors 
also, but if we describe them with respect to the axes shown in figure 2(b) they will be 
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given by (7, T, l), (T, 1, T), (1, T, T) and (T, T, 1). Thus we obtain a set of eight vectors, 
which describe all the possible bonds, since in solving a problem by a ‘random-walk’ 
method these vectors also describe the direction of translation in going from one lattice 
point (atom) to the neighbouring one. This set can be symbolically written as (1, 1, 1). 
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